专利对于一个公司企业和个人起到非常重要的作用,因为它直接影响到利益及今后的发展趋势。所以,作为一名议员需要更佳精细化将专利的词汇翻译标准,上海鑫美译翻译有限公司查找了一篇英文专利翻译范文格式范文,仅供参考学习交流。
[1] w.-w. liu, x.-b. yan, j.-w. lang, et al. flexible and conductive nanocomposite electrode based on graphene sheets and cotton cloth for supercapacitor[j]. journal of materials chemistry, 2012, 22(33): 17245-17253.
[2] b. g. choi, s.-j. chang, h.-w. kang, et al. high performance of a solid-state flexible asymmetric supercapacitor based on graphene films[j]. nanoscale, 2012, 4(16): 4983-4988.
[3] l. yuan, x.-h. lu, x. xiao, et al. flexible solid-state supercapacitors based on carbon nanoparticles/mno2 nanorods hybrid structure[j]. acs nano, 2011, 6(1): 656-661.
[4] q. liu, m. h. nayfeh,s.-t. yau. brushed-on flexible supercapacitor sheets using a nanocomposite of polyaniline and carbon nanotubes[j]. journal of power sources, 2010, 195(21): 7480-7483.
[5] z. niu, j. du, x. cao, et al. electrophoretic build-up of alternately multilayered films and micropatterns based on graphene sheets and nanoparticles and their applications in flexible supercapacitors[j]. small, 2012: n/a-n/a.
[6] y. j. kang, s.-j. chun, s.-s. lee, et al. all-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer-ion gels[j]. acs nano, 2012.
[7] l. bao, j. zang,x. li. flexible zn2sno4/mno2 core/shell nanocable?carbon microfiber hybrid composites for high-performance supercapacitor electrodes[j]. nano letters, 2011, 11(3): 1215-1220.
[8] b. g. choi, j. hong, w. h. hong, et al. facilitated ion transport in all-solid-state flexible supercapacitors[j]. acs nano, 2011, 5(9): 7205-7213.
[9] x. dong, l. wang, d. wang, et al. layer-by-layer engineered co–al hydroxide nanosheets/graphene multilayer films as flexible electrode for supercapacitor[j]. langmuir, 2011, 28(1): 293-298.
[10] s.-l. chou, j.-z. wang, s.-y. chew, et al. electrodeposition of mno2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors[j]. electrochemistry communications, 2008, 10(11): 1724-1727.
[11] y. gao, v. presser, l. zhang, et al. high power supercapacitor electrodes based on flexible tic-cdc nano-felts[j]. journal of power sources, 2012, 201(0): 368-375.
[12] m. rouvala,t. von rauner. apparatus i.e. supercapacitor, for use in flexible printed circuit structure of e.g. personal digital assistant, has rigid-flex circuit board comprising rigid regions physically and electrically connected to each other by flexible region. us2012025787-a1; wo2012013855-a1 [p].
[13] y. an, t. jiang, x. mi, et al. electrode for flexible solid supercapacitor, comprises active substance, conductive agent and adhesive in specific ratio, where outer layer of active substance is coated with ion/electron polymer film. cn102324317-a [p].
[14] c. masarapu, l.-p. wang, x. li, et al. 柔性超级电容器 tailoring electrode/electrolyte interfacial properties in flexible supercapacitors by applying pressure[j]. advanced energy materials, 2012, 2(5): 546-552.
[15] x. lu, h. dou, c. yuan, et al. polypyrrole/carbon nanotube nanocomposite enhanced the electrochemical capacitance of flexible graphene film for supercapacitors[j]. journal of power sources, 2011.
[16] m. xue, z. xie, l. zhang, et al. microfluidic etching for fabrication of flexible and all-solid-state micro supercapacitor based on mno2 nanoparticles[j]. nanoscale, 2011, 3(7): 2703-2708.
[17] k. wang, p. zhao, x. zhou, et al. flexible supercapacitors based on cloth-supported electrodes of conducting polymer nanowire array/swcnt composites[j]. journal of materials chemistry, 2011, 21(41): 16373-16378.
[18] j. ge, g. cheng,l. chen. transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films[j]. nanoscale, 2011, 3(8): 3084-3088.
[19] x. yan, z. tai, j. chen, et al. fabrication of carbon nanofiber-polyaniline composite flexible paper for supercapacitor[j]. nanoscale, 2011, 3(1): 212-216.
[20] k. wang, w. zou, b. quan, et al. an all-solid-state flexible micro-supercapacitor on a chip[j]. advanced energy materials, 2011, 1(6): 1068-1072.
[21] c. meng, c. liu, l. chen, et al. highly flexible and all-solid-state paperlike polymer supercapacitors[j]. nano letters, 2010, 10(10): 4025-4031.
[22] x. lu, t. zhai, x. zhang, et al. wo3–x@au@mno2 core–shell nanowires on carbon fabric for high-performance flexible supercapacitors[j]. advanced materials, 2012, 24(7): 938-944.
[23] z. weng, y. su, d.-w. wang, et al. graphene–cellulose paper flexible supercapacitors[j]. advanced energy materials, 2011, 1(5): 917-922.
[24] m. c. k. sellers, n. p. zussblatt,c. p. marsh. potassium perruthenate-treated carbon nanotube sheets for flexible supercapacitors[j]. electrochemistry communications, 2012, 18(0): 58-61.
[25] g. wang, x. sun, f. lu, et al. flexible pillared graphene-paper electrodes for high-performance electrochemical supercapacitors[j]. small, 2012, 8(3): 452-459.
[26] m. jin, g. han, y. chang, et al. flexible electrodes based on polypyrrole/manganese dioxide/polypropylene fibrous membrane composite for supercapacitor[j]. electrochimica acta, 2011, 56(27): 9838-9845.
[27] x. lu, h. dou, b. gao, et al. a flexible graphene/multiwalled carbon nanotube film as a high performance electrode material for supercapacitors[j]. electrochimica acta, 2011, 56(14): 5115-5121.
[28] q. wu, y. xu, z. yao, et al. supercapacitors based on flexible graphene/polyaniline nanofiber composite films[j]. acs nano, 2010, 4(4): 1963-1970.
[29] a. davies, p. audette, b. farrow, et al. graphene-based flexible supercapacitors: pulse-electropolymerization of polypyrrole on free-standing graphene films[j]. the journal of physical chemistry c, 2011, 115(35): 17612-17620.
[30] s. d. perera, b. patel, n. nijem, et al. vanadium oxide nanowire–carbon nanotube binder-free flexible electrodes for supercapacitors[j]. advanced energy materials, 2011, 1(5): 936-945.
[31] z. li, y. mi, x. liu, et al. flexible graphene/mno2 composite papers for supercapacitor electrodes[j]. journal of materials chemistry, 2011, 21(38): 14706-14711.
[32] y.-y. horng, y.-c. lu, y.-k. hsu, et al. flexible supercapacitor based on polyaniline nanowires/carbon cloth with both high gravimetric and area-normalized capacitance[j]. journal of power sources, 2010, 195(13): 4418-4422.
[33] j. bae, m. k. song, y. j. park, et al. fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage[j]. angewandte chemie international edition, 2011, 50(7): 1683-1687.
专利列表(部分由pdf资料)
[1] e. r. buiel, v. eshkenazi, l. rabinovich, et al. hybrid lead-carbon-acid supercapacitor energy storage device e.g. battery, has carbon electrode having conductive material and electroconductive shield material to which activated carbon electrode is adhered using binder material. us2008100990-a1; wo2008057765-a2; wo2008057765-a3; us7881042-b2 [p].
[2] g. gruner, i. oconnor,i. o'connor. supercapacitor electrode, e.g. for hybrid electric vehicles comprises electrochemical supercapacitor material, highly-structured double layer supercapacitor material, and less-structured double layer supercapacitor material. us2011255214-a1 [p].
[3] e. gerber. hybrid lead acid supercapacitor battery energy storage device has titanium core positive electrodes in which each cores has expanded metal component portion and flash electroplated coating layer, and negative carbon electrode assembly. us2012003509-a1 [p].
[4] h. zheng, o. wei, y. huang, et al. fabrication of an electrode for supercapacitor applications by using sol-gel process. us6168694-b1 [p].
[5] c. andersson,m. jorgensen. communication device e.g. cellular phone, has antenna provided into array for communicating message received from transmitter, and crank powering supercapacitor that stores charge generated by movement of crank. us2010056048-a1 [p].
[6] p. mitchell, x. xi,l. zhong. energy storage device product e.g. supercapacitor, for powering vehicle's engine, has dry adhesive adhered on current collector, and electrode film adhered on collector by dried adhesive. us2011299219-a1 [p].
[7] c. peng, s. zhang, x. zhou, et al. charge storage device e.g. asymmetrical supercapacitor, has pair of electrodes that stores electric charge and has respective capacitances that are different from each other, where ratio of capacitances is formed to be greater than unity. wo2012020393-a2 [p].
[8] i. d. kim, y. song,t. s. hyun. composite electrode active material, useful for fabricating a supercapacitor, comprises ruthenium oxide complex. us2012063058-a1 [p].
[9] j. h. bae, b. k. kim,c. r. jung. use of carboxymethyl cellulose (having specific viscosity) in slurry composition for manufacturing an electrode for an energy storage device including rechargeable battery and supercapacitor. us2011303881-a1; jp2011256358-a [p].
[10] l. zheng, h. yang, w. cai, et al. bipolar electrode useful in a supercapacitor desalination device, comprises an intermediate layer comprising carbon materials, first and second layers, cation and anion selective materials, reinforcement layers, and adhesive layers. us2011024287-a1; wo2011016903-a1; wo2011016903-a8 [p].
[11] o. ryul kim, o. min kim, g. sik lee, et al. supercapacitor, has separation film comprising electrode layer coated with carbon nanotube powder, conductive substrate formed at side of separation film, and insulating plate arranged at upper side of insulator box. kr2011000100-a; kr1057410-b1 [p].
[12] m. rouvala,t. von rauner. apparatus i.e. supercapacitor, for use in flexible printed circuit structure of e.g. personal digital assistant, has rigid-flex circuit board comprising rigid regions physically and electrically connected to each other by flexible region. us2012025787-a1; wo2012013855-a1 [p].
[13] k. c. roh, s. m. park, j. w. lee, et al. producing graphene electrode used for supercapacitor, involves forming graphene mixture by mixing e.g. graphene powder, conductive materials, molasse and dispersing medium, sintering mixture, and press-molding mixture. kr2011058223-a; kr1079317-b1 [p].
[14] v. obreja. invention relates to process for manufacturing supercapacitor and thus obtained supercapacitor. ro125941-a2 [p].
[15] p. b. karandikar,d. b. talange. method of manufacturing electrode for supercapacitor. in201002858-i3 [p].
[16] c. chang,c. wei. thermal management multi-layer film/sheet and hollow articles for the use with secondary battery, supercapacitor and battery pack comprises a laminate of a set of alternating metal, plastic, and adhesive layers. tw201101557-a [p].
[17] c. n. song h, c. n. chen x,c. n. zhao s. manufacturing graphene nanosheets useful for supercapacitor, involves adding graphite to mixed liquid, adding potassium chlorate to obtained mixture, mixing expanded graphite and grinding pebble and ball milling mixture. cn101870466-a [p].
[18] l. shiue,m. goto. multi electrode bipolar element for use in bipolar supercapacitor, has separator arranged between two electrodes for stacking electrode and separator into prismatic form, where biplor element is partially sealed. wo2008130042-a2; wo2008130042-a3; wo2008130042-a4; jp2010524200-w; us2010302708-a1 [p].
[19] c. n. li b, c. n. ling f, c. n. she p, et al. adhesive agent used for electrode slurry for electrode sheet for supercapacitor, contains mixture of adhesive agent(s) having molecular weight less than specific value and adhesive agent(s) having molecular weight more than specific value. cn101760154-a [p].
[20] w. gan, h. liu, j. liu, et al. dc differential pulse combined electrodepositing method for preparing ruthenium oxide electrode material of supercapacitor, involves depositing an electrodepositing liquid on substrate with predetermined differential pulse current. cn101525760-a; cn101525760-b [p].
[21] w. gan, h. liu, j. liu, et al. thermal coating decomposition for preparing ruthenium oxide electrode material of supercapacitor involves carrying out thermal treatment on coated or drawn film and insulating at specified conditions. cn101567269-a; cn101567269-b [p].
[22] l. shiue, l. li, h. chung, et al. manufacture cylindrical high voltage supercapacitor as energy-storage device, by interposing bipolar electrode(s) between anode and cathode. us6579327-b1 [p].
[23] v. refko, e. shembel, v. khandetskyy, et al. service life determination apparatus for ultrasonic and electromagnetic testing of electrochemical energy device e.g. supercapacitor has polyurethane tip glued to ultrasonic probes to match acoustic resistance of probes with test object. us2008028860-a1; us7845232-b2 [p].
[24] j. dai, s. m. lipka, j. r. miller, et al. asymmetric supercapacitor comprises positive electrode comprising current collector and primary active material, negative electrode containing carbonaceous active material, solid electrolyte and separator plate. us2009290287-a1; cn101989499-a; us8107223-b2 [p].
[25] c. n. chen s, c. n. ruan d,c. n. chen z. adhesive used for manufacturing electrode used in supercapacitor, comprises polyvinylpyrrolidone, polytetrafluoroethylene and sodium carboxymethyl cellulose. cn101845281-a [p].
[26] y. an, t. jiang, x. mi, et al. electrode for flexible solid supercapacitor, comprises active substance, conductive agent and adhesive in specific ratio, where outer layer of active substance is coated with ion/electron polymer film. cn102324317-a.